
A General Equivalence Checking Framework for Multivalued

Logic

Chia-Chun Lin, Hsin-Ping Yen, Sheng-Hsiu Wei, Pei-Pei Chen,
Yung-Chih Chen, and Chun-Yao Wang

ABSTRACT

Logic equivalence checking is a critical task in the ASIC design

flow. Due to the rapid development in nanotechnology-based de-

vices, an efficient implementation of multivalued logic becomes

practical. As a result, many synthesis algorithms for ternary logic

were proposed. In this paper, we bring out an equivalence checking

framework based on multivalued logic exploiting the modern SAT

solvers. Furthermore, a structural conflict-driven clause learning

(SCDCL) technique is also proposed to accelerate the SAT solving

process. The SCDCL algorithm deploys some strategies to cut off

the search space for SAT algorithms. The experimental results show

that the proposed SCDCL technique saves 42% CPU time from SAT

solvers on average over a set of industrial benchmarks.

KEYWORDS

Equivalence checking, multivalued logic, and SAT solvers.

ACM Reference Format:

Chia-Chun Lin, Hsin-Ping Yen, Sheng-Hsiu Wei, Pei-Pei Chen, and Yung-

Chih Chen, and Chun-Yao Wang. 2021. A General Equivalence Checking

Framework for Multivalued Logic. In 26th Asia and South Pacific Design

Automation Conference (ASPDAC ’21), January 18–21, 2021, Tokyo, Japan.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3394885.3431588

1 INTRODUCTION

In early days, for multivalued logic, the functional completeness

is a fundamental and important topic to researchers. Many previous

works about multivalued logic in the 1950s focused on deriving a

set of practically implementable primitive functions [10][23]. Later,

some heuristics for minimizing multivalued logic were proposed

[1][21]. In addition to the synthesis algorithms, the research of

verifying multivalued logic circuits was also presented [6][17]. For

example, the work of [6] proposed a method to decompose a multi-

valued logic function into the corresponding canonical represen-

tation, and facilitates the test vector generation for multivalued

This work is supported in part by the Ministry of Science and Technology of Taiwan
under MOST 106-2221-E-007-111-MY3, MOST 108-2218-E-007-061, MOST 109-2221-E-
007-082-MY2, MOST 109-2221-E-155-047-MY2, and MOST 109-2224-E-007-005.
C.-C. Lin, H.-P. Yen, S.-H. Wei, P.-P. Chen, and C.-Y. Wang are with the Department
of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 30013, R.O.C.
Y.-C. Chen is with the Department of Computer Science and Engineering, Yuan Ze
University, Taoyuan, Taiwan 32003, R.O.C.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431588

circuits. The work of [17] investigated different ternary decision dia-

grams and compared their sizes using a set of benchmark functions.

However, due to the lack of efficient implementations, multivalued

logic had little impact on integrated circuit designs.

In the past decade, multivalued logic has attracted great at-

tention from the researchers again due to the rapid development

in nanotechnology-based devices[11][18][19]. . For example, the

threshold voltage of a carbon nanotube transistor (CNTFET) is

determined by its diameter, and a multi-threshold design can be

achieved by the diameter adjustment. Recently, the authors of [19]

proposed a design methodology that aims to minimize the size

of the ternary circuits. According to that work, the selection of

condition function significantly influences the gate count in the

synthesized ternary circuits. Moreover, several synthesis algorithms

for ternary logic were proposed in [20][24]. For example, the work

of [24] proposed a methodology to minimize the transistor count

in the ternary circuits by a ternary-transformed binary decision

diagram.

On the other hand, logic equivalence checking is a critical task

in the ASIC design flow [7]. This is because the designers have

to ensure the synthesized circuit matches the specification after

transformation. Since logic equivalence checking is an NP-hard

problem [7], various approaches had been proposed to accelerate

the checking procedure. An important branch of approaches for

equivalence checking is based on the binary decision diagram (BDD)

and its derivatives [3][8][16]. Generally, in BDD-based approaches,

the two circuits to be compared are transformed into the corre-

sponding canonical forms such that they can be compared based

on their structures. The major concern of the BDD-based equiva-

lence checking is scalability. Once the number of inputs increases,

the construction of BDD might be failed due to explosive memory

requirement.

An effective solution to this scalability issue is to decompose the

designs under verification into several subcircuits. The cutpoints for

decomposition can be obtained by using random simulation, ATPG

[4][5], or BDDs [9]. The authors in [9] adopted several methods,

including circuit graph hashing, cut frontier, and false-negative

elimination, to solve the memory blow-up issue. In contrast, the

authors in [7][15] used SAT solvers, instead of the BDD-based

approaches, to solve the equivalence checking problem. Thework in

[7] presented a detailed analysis on the features of SAT algorithms

and claimed that SAT is amore robust and flexible engine of Boolean

reasoning than BDDs for the equivalence checking application.

Although the previous SAT-based works have achieved a significant

success on equivalence checking, they did not deal withmultivalued

circuits.

Thus, in this work, we propose a general equivalence checking

framework for multivalued logic. To the best of our knowledge,

61

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Chia-Chun Lin et al.

Figure 1: Truth table for ternary gates. (a) (b) The definition

of ternary AND and OR gates in [26]. (c) (d) The definition

of ternary AND and OR gates in [6][23].

this is the first work that focuses on multivalued logic equivalence

checking problem.

2 PRELIMINARIES

2.1 Ternary logic

In this paper, we select ternary logic {0, 1, 𝑥} as an example to
demonstrate the proposed multivalued logic equivalence check-

ing framework. However, this framework can be applied to any

multivalued logic by some minor adjustments. Fig. 1 shows the

truth tables for primitive ternary gates. We observed that the same

ternary gate has different functionalities in the literature [6][23][26].

For example, Fig. 1(a) and Fig. 1(b) show the definitions of ternary

AND gate and OR gate described in the IEEE standard for Verilog

hardware description language [26]. On the other hand, Fig. 1(c)

and Fig. 1(d) show another behavior of ternary AND and OR gates

[6][23]. The output of ternary AND gate under the input pattern

(1, 𝑥) is 𝑥 in Fig. 1(a), but is 1 in Fig. 1(c). Although the multiple

definitions of the ternary gates might cause some potential issues

in other research, they are not troubles to the equivalence checking

framework in this work. In the rest of this paper, we adopt the

definition of ternary logic in the IEEE standard [26] to explain the

proposed equivalence checking framework. If designers want to

use another definition, they just make some changes accordingly.

2.2 Boolean satisfiability problem

Boolean satisfiability (SAT) problem is a problem of determining

if there exists an assignment that satisfies the given Conjunctive

Normal Form (CNF) formula. In the 1990s, Marques-Silva et al.

[2][12][13][25] proposed a conflict-driven clause learning (CDCL)

algorithm, which can improve the performance of modern SAT

solvers [28][29]. Due to the rapid progress on the performance of

SAT solvers, many EDA problems can be solved effectively and

efficiently when they are modeled as an SAT problem.

2.3 Unit propagation and the conflict-driven
clause learning algorithm

Unit propagation plays an important role in the SAT problem

because it prunes unnecessary search when traversing the solution

Figure 2: (a) A CNF formula to be solved. (b) A directed

acyclic graph illustrates the variable assignment process in

the SAT algorithm.

space. Unit propagation means that the value of a variable can be ex-

actly determined by logic implication. For example, Fig. 2(a) shows

a CNF formula to be solved. The SAT algorithm first arbitrarily

assigns an initial value to a variable and tries to find a satisfying

assignment for this formula. In this example, assume that the SAT

algorithm first assigns 𝑥1 = 0. According to the given formula, we

know that 𝑥2 and 𝑥3 have to be 1 simultaneously; otherwise the
clauses (𝑥1 ∨ 𝑥2) and (𝑥1 ∨ 𝑥3) cannot be satisfied. Unit propaga-
tion can be applied on the CNF formula repeatedly if a clause only

contains one variable to be assigned. The directed acyclic graph in

Fig. 2(b) illustrates the unit propagation process of the CNF formula

listed in Fig. 2(a). The edges in the graph stand for logic implications

in the unit propagation. For example, 𝑥1 = 0 implies 𝑥2 = 1, hence,

there exists an edge from 𝑥1 = 0 to 𝑥2 = 1 in the graph.

After assigning 𝑥1 = 0, 𝑥2 = 1, and 𝑥3 = 1 to the formula,

we observe that every unsatisfied clause contains more than one

variable to be determined. Therefore, the SAT algorithm has to

assign another variable. In this example, assume that 𝑥5 is as-

signed to be 0 next. Then, we can obtain 𝑥6 = 1 and 𝑥7 = 0

by unit propagation again. However, we observe that 𝑥7 has to
be 1 when 𝑥4 = 1 and 𝑥8 = 0. Since 𝑥7 would be assigned to

be 1 and 0 simultaneously, a conflict occurs during this assign-

ment process. Therefore, the assignments of these variables can-

not satisfy the CNF formula. According to Fig. 2(b), we observe

that the assignment (𝑥4, 𝑥6, 𝑥8) = (1, 1, 0) will lead to the con-

flict without having assignments in other variables. That is, the

SAT solving process cannot obtain a satisfying assignment with

(𝑥4, 𝑥6, 𝑥8) = (1, 1, 0). Thus, the CDCL algorithm adds an additional

clause (𝑥4 ∧ 𝑥6 ∧ 𝑥8) = (𝑥4∨𝑥6∨𝑥8) to avoid obtaining the conflict
assignment repeatedly. Another benefit of adding this additional

clause is that this clause allows the SAT algorithm backtracking to

the previous level in the decision diagram and thus cutting off a

wide range of the search space.

2.4 Tseitin transformation

Tseitin transformation algorithm [22] takes a combinational

circuit as input and generates a corresponding CNF formula. Fig.

3(a) shows an AND gate and its corresponding CNF formula. Fig.

3(b) lists the truth table of AND function. We can see that only four

assignments 𝐴𝐵𝐶 = 000, 010, 100, and 111 satisfy the CNF formula.

62

A General Equivalence Checking Framework for Multivalued Logic ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Figure 3: (a) An AND gate and its corresponding CNF for-

mula. (b) The truth table of AND function.

Figure 4: (a) A model of ternary AND gate and the corre-

sponding Boolean block. (b) One encoding for ternary logic.

(c) The truth table of the encoded block.

In other words, the satisfying assignments to the CNF formula are

identical to the function of AND gate. In fact, all the logic gates

can be expressed as their corresponding CNF formulae by Tseitin

transformation.

3 PROPOSED EQUIVALENCE CHECKING
FRAMEWORK

3.1 Encoding and optimization

Since solving the equivalence checking problem for Boolean

circuits with SAT solvers has achieved a great success, we model a

ternary logic circuit as a Boolean circuit for exploiting the strength

of advanced SAT solvers. Intuitively, we can use two bits to repre-

sent the three values in the ternary logic. Therefore, the first step

in the framework is to transform a ternary gate to a corresponding

Boolean block, as shown in Fig. 4(a). Inputs 𝐴, 𝐵, and output 𝐶 in a

ternary AND gate are represented by wire pairs (𝐴1, 𝐴0), (𝐵1, 𝐵0),
and (𝐶1,𝐶0) in the Boolean block.

Next, the original ternary value {0, 1, 𝑥} are encoded to {00, 01, 10}
as shown in Fig. 4(b). To synthesize the transformed Boolean block,

we construct its truth table as shown in Fig. 4(c) based on the defini-

tion of ternary AND gate in Fig. 1(a) and the encoding rules in Fig.

4(b). Since the truth table of the ternary AND gate contains 32 = 9

entries only, when they are mapped to the truth table of the Boolean

block, which contains 24 = 16 entries, 7 entries in Fig. 4(c) remain

unmapped. These unmapped entries can be viewed as don’t cares

when synthesizing the circuit because they will never occur in the

Boolean block. Since the input size of the Boolean block is small, we

can use K-map or Quine-McCluskey minimization algorithm [14]

to obtain the optimal result, as shown in Fig. 5(a). Fig. 5(b) shows

the synthesized Boolean block, which contains four Boolean AND

gates and one Boolean OR gate.

Obviously, different encoding rules influence the gate count of

the synthesized Boolean block. For example, we can obtain another

truth table when we encode the ternary value {0, 1, 𝑥} as {01, 10, 00}
as shown in Fig. 6(a). Fig. 6(b) and Fig. 6(c) show the corresponding

optimized result and the synthesized Boolean block, which contains

only two gates, respectively. Since all the primitive ternary gates can

be transformed into the corresponding Boolean blocks in the similar

way, a ternary circuit can be transformed into a Boolean circuit

while keeping its functionality. In this work, we have evaluated

all the encoding rules and adopt the encoding rule in Fig. 6(a) for

the Boolean block transformation such that the gate count in the

transformed Boolean circuit is minimized.

3.2 Compatible equivalence checking

In the Boolean logic equivalence checking problem, the outputs

of two circuits have to be exactly identical under every input pattern

if and only if we claim that they are equivalent. The ternary logic,

however, might have different definitions. The Problem A in the

CAD Contest@ICCAD 2020 [30] gives the definition of compatible

equivalence.

Definition 1: Given two variables 𝑎, 𝑏 ∈ {0, 1, 𝑥}. Variable 𝑎 is com-
patibly equivalent to𝑏 if and only if (𝑎, 𝑏) ∈ {(0, 0), (1, 1), (𝑥, 0), (𝑥, 1),
(𝑥, 𝑥)}. On the contrary, variable 𝑎 is not compatibly equivalent to
𝑏 if and only if (𝑎, 𝑏) ∈ {(0, 1), (1, 0), (0, 𝑥), (1, 𝑥)}.

That is, we can consider the variable 𝑎 is from the specification

while the variable 𝑏 is from the implementation. Hence, it is allowed

that when the specification requires the variable 𝑎 to be 𝑥 , the
implementation returns the variable 𝑏 to be 0, 1, or 𝑥 . However, it
is not allowed that when the specification requires the variable 𝑎 to
be either 0 or 1, the implementation returns the variable 𝑏 to be 𝑥 .

Given two circuits under equivalence checking 𝐺 and 𝑅 that

are generated based on the encoding rule presented in Section

3.1. According to Definition 1, 𝐺 is compatibly equivalent to 𝑅 if

and only if the output values of 𝐺 are compatibly equivalent to

the output values of 𝑅 under every input pattern. We construct a

subcircuit, as shown in the right part of Fig. 7, and connect it with

the circuits𝐺 and 𝑅. Then, we use SAT solvers to check whether𝐺
is compatibly equivalent to 𝑅. Since 𝐺 and 𝑅 are transformed from

ternary logic circuits, the outputs become two encoded Boolean

pairs (𝐺1,𝐺0) and (𝑅1, 𝑅0). The four gates 𝐴𝑁𝐷1, 𝐴𝑁𝐷2, 𝐴𝑁𝐷3,

and𝐴𝑁𝐷4 are designed to detect the non-compatible combinations

(𝐺, 𝑅) = (0, 1), (1, 0), (0, 𝑥), and (1, 𝑥), respectively. Note that the

63

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Chia-Chun Lin et al.

Figure 5: (a) The optimal result of the truth table in Fig. 4(c). (b) The synthesized Boolean block.

Figure 6: (a) Another encoding for ternary logic. (b) The truth table of the encoded block under the encoding rule in Fig. 6(a).

(c) The synthesized Boolean block.

Figure 7: The proposed subcircuit for compatible equiva-

lence checking.

output of circuit in Fig. 7 is set to be 1. This setting implies that

at least one output of 𝐴𝑁𝐷1, 𝐴𝑁𝐷2, 𝐴𝑁𝐷3, and 𝐴𝑁𝐷4 has to be

1. When the SAT solver returns a satisfiable assignment, which is

called a counterexample, for the corresponding CNF formula of

the circuit, it means that there exists an input assignment such

that 𝐺 is not compatibly equivalent to 𝑅. If the SAT solver returns

unsatisfiable for the corresponding CNF formula, 𝐺 is compatibly

equivalent to 𝑅. Note that the equivalence checking problem for

the circuits with multiple outputs can be solved by duplicating the

proposed subcircuit for each output.

3.3 Structural conflict-driven clause learning

Since the equivalence checking problem has been modeled as

an SAT problem, it is important to deploy some strategies that can

accelerate the SAT solving process. The CDCL algorithm [2][12][13]

has been adopted by most modern SAT solvers because of its ability

Figure 8: (a) An example for SCDCL. (b) An inconstant exam-

ple for SCDCL.

to learn new clauses from the conflicts to improve the performance

in the search process.

Here, we propose a structural conflict-driven clause learning

(SCDCL) algorithm to find the conflicts from the viewpoint of the

circuit structure. That is, we find the wire assignment combinations

that will never occur, satisfiability don’t cares, in the circuit by logic

implication. Fig. 8(a) shows an example to demonstrate SCDCL

algorithm. First, we set 𝑛4 = 1, and this setting implies 𝑛1 = 1 and

𝑛2 = 1. Then, we know that 𝑛5 = 1 because 𝑛2 = 1 is the controlling

value for the OR gate. Since 𝑛4 = 1 implies 𝑛5 = 1, this assignment

(𝑛4, 𝑛5)=(1, 0) is not possible in the circuit. Thus, we can add an

additional clause (𝑛4 ∧ 𝑛5) = (𝑛4 ∨ 𝑛5) into the CNF formula for
pruning the search space for SAT solver. To maximize the ability

of SCDCL algorithm, we iteratively assign the output of AND gate

to be 1 and the output of OR gate to be 0. Next, we perform logic

implications on the circuit as much as possible. Finally, we add the

learned clauses from the structural conflicts into the CNF formula.

In the logic implication process, however, we might encounter

the situation that we have to assign inconsistent values to a wire.

For example, assume that Fig. 8(b) is a subcircuit embedded in a

large circuit, 𝑛5 = 1 implies 𝑛3 = 1 and 𝑛4 = 1; 𝑛3 = 1 implies

64

A General Equivalence Checking Framework for Multivalued Logic ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Figure 9: The overall flowchart of the proposed equivalence

checking framework.

𝑛1 = 0; and 𝑛4 = 1 implies 𝑛1 = 1 and 𝑛2 = 1. Thus, both 𝑛1 = 0 and

𝑛1 = 1 are required in the implication process. This inconsistent

situation means that 𝑛5 cannot be 1 in the given circuit. Therefore,
𝑛5 can be replaced with a constant zero and the transitive fanin

cone of 𝑛5 can be totally removed for circuit minimization when it
drives 𝑛5 only.

Adding these additional clauses can accelerate the SAT solving

process because it prunes the solution space. In addition to the

conflicts obtained by logic implication, we can also add other clauses

from the encoding rule to improve the performance. According to

Fig. 6(a), the ternary values {0, 1, 𝑥} are encoded as {01, 10, 00} in
this work, respectively. In other words, the value of 11 will not

occur in the encoded wire pair. Therefore, we can also exploit this

information to add the corresponding clauses into the CNF formula.

For example, we will add three clauses (𝐴1 ∧𝐴0) = (𝐴1 ∨ 𝐴0),

(𝐵1 ∧ 𝐵0) = (𝐵1 ∨ 𝐵0), and (𝐶1 ∧𝐶0) = (𝐶1 ∨ 𝐶0) into the CNF
formula for the transformed Boolean block in Fig. 4(a).

4 OVERALL FLOW

The proposed general equivalence checking framework is shown

in Fig. 9. The inputs are two ternary logic circuits under verification.

First, we conduct circuit analysis on the benchmarks. The bench-

marks used in the experiments are provided by the contributor of

Problem A in the CAD Contest@ICCAD 2020 [30], which contains

large industrial designs. According to the problem description, the

ternary values are generated from some ternary sources. In other

words, the ternary values might not pass through the whole cir-

cuit. Therefore, the framework first recognizes the part of circuit

that has to be transformed into the corresponding Boolean block.

Second, the Boolean blocks are generated by the selected encoding

rule. Third, the subcircuit for compatible equivalence checking is

constructed. Since the ternary circuits are transformed into the cor-

responding Boolean circuits, we can further optimize circuits with

existing optimization algorithms. Next, we perform the proposed

SCDCL algorithm to add additional clauses for reducing the SAT

solving time. After that, the CNF formulae of the two circuits under

verification are generated by Tseitin transformation. Finally, the

two ternary circuits are reported as not compatibly equivalent if

the SAT solver returns a satisfying assignment; otherwise, the two

ternary circuits are compatibly equivalent.

5 EXPERIMENTAL RESULTS

We implemented the proposed equivalence checking framework

in C++ language. The experiments were conducted on a 2.6 GHz

Linux platform (CentOS 6.7). The benchmarks used in the experi-

ments are provided by the contributor of Problem A in the CAD

Contest@ICCAD 2020 and are available online [30]. Note that we

will apply the existing logic optimization tool, ABC [27] and a

rewriting script resyn2, in the circuit optimization stages for ex-

ploiting logic sharing among the two circuits under verification.

Table 1 shows the experimental results. Column 1∼3 list the

benchmarks information. Columns 4 and 5 show the gate counts

of the original ternary circuit and the corresponding optimized

Boolean circuit, respectively. In general, the gate count in Boolean

circuits is larger than that in the ternary circuits. However, it is not

the case for some benchmarks due to logic optimization. Columns

6∼7 show the required CPU time for identifying whether the given

two circuits are compatibly equivalent without or with applying

the proposed SCDCL algorithm. Column 8 shows the reduction per-

centage of required CPU time. The last column is the result obtained

by the equivalence checking framework. For example, consider the

benchmark case 5, the gate count of the original ternary circuit

is 11183 and that of the transformed Boolean circuit is 16562. The

required CPU time without or with applying the SCDCL algorithm

is 6788.05 or 1649.38 seconds, respectively. The reduction percent-

age of the required CPU time is 76%, and result is equivalent (EQ).

According to Table 1, the proposed SCDCL algorithm saves the SAT

solving time by 42% on average for all the solved benchmarks. Note

that the framework cannot finish cases 3, 8, 10, 15, and 17 in 12

hours for both approaches.

6 CONCLUSION

In this work, we propose a general multivalued logic equivalence

checking framework and demonstrate it using ternary logic. This

framework can be applied to other multivalued logic by selecting

a proper encoding rule. Furthermore, an SCDCL algorithm for re-

ducing the SAT solving time is also presented. The experimental

results show that a 42% CPU time reduction can be obtained by

applying the SCDCL algorithm.

REFERENCES

[1] C. M. Allen and D. D. Givone, “A minimization technique for

multiple-valued logic systems," IEEE Trans. on Computers, vol.

C-17, no. 2, pp.182-184, 1968.

[2] R. J. Bayardo Jr and R. C. Schrag, “Using CSP look-back tech-

niques to solve real world SAT instances," in Proc. AAAI, pp.

203-208, 1997.

[3] C. L. Berman and L. H. Trevillyan, “Functional comparison of

logic designs for VLSI circuits,” Proc. ICCAD, pp. 456-459, 1989.

[4] A. Biere and W. Kunz, “SAT and ATPG: Boolean engines for

formal hardware verification,” Proc. ICCAD, pp. 782-785, 2002.

[5] M.K. Ganai, A. Aziz, and A. Kuehlmann, “Enhancing simulation

with BDDs and ATPG," in Proc. DAC, pp. 385-390, 1999.

65

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Chia-Chun Lin et al.

Table 1: CPU time comparison for ternary equivalence checking between w/o and w/ SCDCL.

|PI| |PO| |T. gate| |B. gate| w/o SCDCL (s) w/ SCDCL (s) Reduction (%) Result

case 1 48 20 1653 3077 1096.65 963.32 12 EQ

case 2 48 20 1679 3097 1.94 0.29 85 NEQ

case 3 64 32 11649 15354 >12hrs >12hrs - -

case 4 64 32 11944 15649 5.22 3.70 29 NEQ

case 5 160 32 11183 16562 6788.05 1649.38 76 EQ

case 6 160 32 11183 16562 7352.98 1810.77 75 EQ

case 7 96 59 14843 42692 6.87 3.70 46 NEQ

case 8 8214 93 137051 169131 >12hrs >12hrs - -

case 9 96 58 31415 96248 422.10 5.24 99 NEQ

case 10 256 119 90473 88957 >12hrs >12hrs - -

case 11 256 85 88711 86975 34.41 29.93 13 NEQ

case 12 614 54 40537 50447 25789.68 20004.78 22 EQ

case 13 614 68 38645 67887 10896.54 6620.4 39 EQ

case 14 128 1 46958 45446 34.11 33.01 3 NEQ

case 15 193 120 97727 98471 >12hrs >12hrs - -

case 16 1903 1382 102739 90587 159.18 101.66 36 EQ

case 17 128 115 56887 56274 >12hrs >12 hrs - -

case 18 217 2 6110 3489 0.4 0.34 15 EQ

Avg. - - - - - - 42 -

[6] T. A. Giuma, M.A. Tapia, “Canonical representation of multi-

valued logic functions,” in Proc. IEEE Southeastcon, 1992

[7] E. I. Goldberg, M. R. Prasad and R. K. Brayton, “Using SAT for

combinational equivalence checking," in Proc. DATE, 2001.

[8] J. Jain, R. Mukherjee, and M. Fujita, “Advanced verification

technique based on learning,” in Proc. DAC, pp. 420-426, 1995.

[9] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts

and heaps," in Proc. DAC, pp. 263-268, 1997.

[10] C. Y. Lee and W. H. Chen, “Several-valued combinational

switching circuits," Trans. of the American Institute of Electrical

Engineers, vol. 75, no. 3, pp. 278-283, 1956.

[11] S. Lin, Y.-B. Kim, and F. Lombardi, “A novel CNTFET-based

ternary logic gate design," in Proc. International Midwest Sym-

posium on Circuits and Systems, 2009

[12] J. P. Marques-Silva and K. A. Sakallah, “GRASP-A new search

algorithm for satisfiability," in Proc. ICCAD, pp. 220-227, 1996.

[13] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algo-

rithm for propositional satisfiability," IEEE Trans. on Computers,

pp. 506-521, 1999.

[14] E. J. McCluskey, “Minimization of Boolean functions," Bell Syst.

tech J., vol. 35, no. 5, pp. 1417-1444, Nov. 1956.

[15] A. Mishchenko, R. Brayton, J.-H. Jiang, and S. Jang, “Scalable

don’t-care-based logic optimization and resynthesis,” in Inter-

national Symposium on FPGA, pp. 151-160, 2009

[16] S. M. Reddy, W. Kunz, and D. K. Pradhan, “Novel verifica-

tion framework combining structural and OBDD methods in a

synthesis environment,” in Proc. DAC, pp. 414-419, 1995.

[17] T. Sasao, “Ternary decision diagrams,” in Proc. International

Symposium on Multiple-Valued Logic, 1997.

[18] N. Soliman, M. E. Fouda, and A. G. Radwan, “Memristor-

CNTFET based ternary logic gates,” Microelectronics Journal,

vol. 72, pp. 74–85, 2018.

[19] N. Soliman, M. E. Fouda, A. G. Alhurbi, L. A. Said, A. H.Madian,

and A. G. Radwan, “Ternary functions design using memristive

threshold logic,” IEEE Access, vol. 7, 2019.

[20] B. Srinivasu and K. Sridharan, “A synthesis methodology for

ternary logic circuits in emerging device technologies,” IEEE

Trans. on Circuits and Systems, vol. 64, no. 8, pp. 2146-2159,

2017.

[21] S. Y. H. Su, and P. T. Cheung, “Computer minimization of

multivalued switching functions,” IEEE Trans. on Computers,

vol. C-21, no. 9, pp. 995-1003, 1972.

[22] G. Tseitin, “On the complexity of derivation in propositional

calculus," Studies in constructive mathematics and mathemati-

cal logic, vol. 2, no. 115-125, pp. 10–13, 1968.

[23] Z. G. Vranesic, E. S. Lee, and K. C. Smith, “A many-valued

algebra for switching systems,” IEEE Trans. on Computers, vol.

C-19, no. 10, pp. 964-971, 1970.

[24] C. Vudadha, A. Surya, S. Agrawal and M. B. Srinivas, “Synthe-

sis of ternary logic circuits using 2:1 multiplexers”, IEEE Trans.

on Circuits and Systems, vol. 65, no. 12, pp. 4313-4325, 2018.

[25] L. Zhang, C. F. Madigan, M. H. Moskewicz and S. Malik, “Ef-

ficient Conflict Driven Learning in a Boolean Satisfiability

Solver,” Proc. ICCAD, 2001.

[26] IEEE Standard Verilog Hardware Description Language, in

IEEE Standard 1364-2005.

[27] Berkeley Logic Synthesis and Verification Group, “ABC: a

system for sequential synthesis and verification,” Available:

https://people.eecs.berkeley.edu/∼alanmi/abc/.

[28] https://www.labri.fr/perso/lsimon/glucose/.

[29] https://github.com/arminbiere/cadical/.

[30] http://iccad-contest.org/2020/problems.html

66

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

